Homework 6

March 29, 2025

- 1. Let $\epsilon_1, \epsilon_2, \epsilon_3$ be a basis of a linear space V over the number field \mathbb{F} , and f_1, f_2, f_3 be the dual basis. Let $\alpha_1 = \epsilon_1 + \epsilon_2 + \epsilon_3$, $\alpha_2 = \epsilon_2 + \epsilon_3$, $\alpha_3 = \epsilon_3$.
 - (a) Prove that $\alpha_1, \alpha_2, \alpha_3$ form a basis of V.
 - (b) Please find the dual basis of α_1 , α_2 , α_3 in terms of f_1 , f_2 , f_3 .
- 2. Fix $a \in \mathbb{R}$. Let $\mathscr{A}(f(x)) = f(x+a) f(x)$, $\forall f(x) \in \mathbb{R}[x]_n$. Prove that \mathscr{A} is a linear transformation on $\mathbb{R}[x]$, and please find a matrix of \mathscr{A} under the basis $1, x a, \frac{1}{2!}(x a)^2, \cdots, \frac{1}{(n-1)!}(x-a)^{n-1}$.
- 3. Let V and W be two linear spaces of dimension n and m over \mathbb{R} , and φ is a linear transformation from V to W. Please prove that there exist bases of V and W such that the matrix of φ under the given bases is

$$egin{bmatrix} I_r & 0 \ 0 & 0 \end{bmatrix}$$
 , $r = \mathrm{rank}(\varphi)$

- 4. Let A be an $n \times n$ matrix over \mathbb{R} . Let φ be a linear transformation on the linear space of all $n \times n$ matrices over \mathbb{R} $M_{n \times n}(\mathbb{R})$ defined by $\varphi(X) = AX$, $\forall X \in M_{n \times n}(\mathbb{R})$. Please find the trace and determinant of the map φ .
- 5. Let $\varphi: M_{n \times n}(\mathbb{R}) \to \mathbb{R}$ be a linear map. Please prove that :
 - There is a unique $C \in M_{n \times n}(\mathbb{R})$, such that $\varphi(A) = \operatorname{trace}(AC)$, $\forall A \in M_{n \times n}(\mathbb{R})$;
 - If $\forall A, B \in M_{n \times n}(\mathbb{R})$, $\varphi(AB) = \varphi(BA)$, then there is a $\lambda \in \mathbb{R}$, such that $\varphi(A) = \lambda \operatorname{trace}(A)$, $\forall A \in M_{n \times n}(\mathbb{R})$.
- 6. Let V be a linear space of dimension n. Please determine whether there are linear transformations σ , τ on V such that $\sigma\tau \tau\sigma = I$? What about when the V is of infinite dimension?
- 7. Let V be an n dimensional linear space over \mathbb{F} , $\varphi_1, \dots, \varphi_s$ be linear transformations on V, and $\varphi = \sum_{i=1}^s \varphi_i$. Prove that φ is unipotent $\varphi^2 = \varphi$ and $\operatorname{rank}(\varphi) = \sum_{i=1}^s \operatorname{rank} \varphi_i$ if and only if φ_i is unipotent $\varphi_i^2 = \varphi_i$ for $i = 1, \dots, s$ and $\varphi_i \varphi_i = 0$ for $i \neq j$.
- 8. Let $\varphi: M_{n\times n}(\mathbb{R}) \to \mathbb{R}$ be a linear transformation defined by $\varphi(X) = AXA^T$ for $X \in M_{n\times n}(\mathbb{R})$, where A is an $n \times n$ matrix over \mathbb{R} . Please find the dimension of $im(\varphi)$ and a basis.